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Work distribution 
 

Feature  Eddy  Renāts  Thomas 

Shading using Phong Illumination Model  100%  0%  0% 

Recursive ray-tracer  100%  0%  0% 

Hard shadows with visual debug  100%  0%  0% 

Soft shadows with spherical lights  0%  0%  100% 

Acceleration data-structure  0%  100%  0% 

Report  33%  33%  33% 

Soft shadows for other light sources  0%  0%  100% 

Motion blur  0%  0%  100% 

Anti-aliasing  0%  0%  100% 

Cast multiple rays per pixel  0%  0%  100% 

Glossy reflections  100%  0%  0% 

Interpolated normals  0%  100%  0% 

 
   



Features 
Shading using phong Illumination Model 
To shade the objects with the phong illumination model we need to calculate to calculate a 
diffuse and specular component. To calculate the diffuse component we multiply the diffuse 
component of the object with the angle between the normal of the object, the vector to the light 
and the color of the light. The specular component is calculated by multiplying the specular 
component with the angle between the reflected vector from the light and the vector from the 
surface and the camera raised to the power of the shininess of the material. 
 
Visual debugger  Rendered image 

 
 
 
 
 
 
 
 
 
 
 

 
Recursive raytracer 
For the recursive tracer the original getFinalColor gets the sole reason of calling a recursive 
function which in turn can call itself to get the color of a following ray if the surface of a material 
is specular. We decided to make the maximum depth of recursion to be 5. 
 
Visual debugger             Rendered image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Hard shadows with visual debug 
For the hard shadows we send a ray to the point that’s hit by the original ray. 
If the hitpoint doesn’t ‘see’ the lightsource, the ray returns a black color. 
 
Visual debug           Rendered image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Soft shadows with spherical lights with visual debug 
To create a soft shadow, a point P is sampled on the spherical light.  
Our sampling strategy is as follows: first, generate a point on the unit sphere by obtaining a 
longitude and latitude (λ, φ) (uniformly distributed along [0,1]). 
Then compute the rectangular coordinates (x, y, z) using the longitude and latitude.​1 
Obtaining P is done by translating and scaling the space such that the unit sphere now lies on 
the spherical light (translate by [x​light​, y​light​, z​light​], then scale by size​light​). 
 
Next, we check if P is on the side of the sphere that faces the vertex. 
To do this, a ray is cast from P to the vertex, and if this ray intersects with the spherical light, we 
abort this sample of P and try again, repeating until a point that faces the vertex is obtained. 
 
After this, light is simulated as if P were a point light, using the same hard shadow functionality. 
The procedure described above can be repeated many times, and the user can select this by 
using the ‘rays per light’ slider in the user interface. 
   

1 ​point on unit sphere procedure via: https://math.stackexchange.com/a/1586185 



Visual debug 

 
(as we add more rays per light per pixel - shown here from left to right - we better approximate the true fraction of light intensity) 
 
Rendered image 

 
(rendered with approx. 500 light rays per light per pixel)  
 
Acceleration data-structure 
The acceleration data-structure is initialized by creating axis-aligned bounding boxes (AABBs) 
and recursively splitting them to decrease their total area. Each bounding box contains some 
triangles from the original scene. Lets denote a triangle's lowest value on some axis as its lower 
bound. The splitting is done by taking the longest axis of the AABB (largest distance from 
minimum to maximum value) and calculating the average of the lower bounds for all triangles 
on this axis. Then if some triangle’s lower bound exceeds this average, it is assigned to the first 
child AABB, and if it is smaller or equal to the average, it is assigned to the second child AABB. I 
selected this subdivision criteria, as its performance ended up being the best compared to other 
methods (calculating centroids instead of lower bounds, taking the median instead of the 
average, etc.). The maximum depth of the recursion is automatically calculated by the base 2 
logarithm of the total amount of triangles in this scene plus a constant. From experimenting 



with different constant values, I ended up choosing 7, as it performed the best. In addition, any 
node is considered a leaf node if it contains less than 4 triangles. In this case no additional 
subdivision is necessary. 
 
For drawing the debug AABBs I decided to slightly modify the requirements. Instead of 
displaying only the nodes that are on this current level, I decided to also show leaf nodes that 
were on a lower level. Since my subdivision does not always divide the triangles evenly, the leaf 
nodes can be on different levels. I feel like this better represents the use case of debugging, as 
all of the triangles in the scene are always contained in some AABB. 
 
For calculating the intersections I made a function that recursively intersects the ray with 
AABBs. The recursive call is made only if the ray intersects the child AABB, and the distance to 
this AABB is smaller than the current closest triangle intersection. To do this efficiently, I added 
a function in ray_tracing.cpp that calculates the distance to some AABB without modifying the 
value of ray.t, while returning 0 in the case where the ray origin is already inside the AABB. 
Another performance optimization that was implemented is the ordering of the child AABBs. 
Before making the recursive calls the child AABBs are sorted based on their distance to the ray 
origin. This is useful, as if we already find an intersection in the closest child node, we do not 
need to make the recursive call for the other child node. 
 
Some additional optimizations that I added include adding a Ox compiler flag, pre-calculating 
the inverse ray direction to reduce the number of times division is performed, optimizing the 
pointInTriangle function, and creating a custom function to get a random vector. This (together 
with some of the optimizations mentioned in the construction and intersection section) brought 
the total rendering time of the dragon model down from the initial implementation’s 800ms to 
roughly 57ms (calculated with the default camera location). 
 
Visual debug with levels 0, 5, 10, and 20: 



 
 
Interpolated normals 
The interpolation of the normals is done when calculating the intersection of some ray with a 
triangle. It calculates the barycentric coordinates of the intersection point and interpolates the 
normals based on these coordinates. I added an additional attribute “interpolatedNormal” to the 
HitInfo class that stores the interpolated normal alongside the “normal” attribute. Then in the 
menu I added a checkbox that can be used to turn this feature on or off. It is also used in all 
visual debug options when this feature is turned on. 
 



Rendered images with and without interpolated normals:

 
 
Visual debug with the same intersection point with and without interpolated normals: 

 
 
Dynamic rays per pixel / Motion blur 
These three methods are summarized in the Imaging panel. 
When raytracing, the user can choose from 3 imaging modes: 
Continuous mode 
Start every frame with a blank screen and draw over it. The next frame, the result from the 
previous frame is discarded. 
Dynamic mode 
Maintain a rolling average of the results of the previous frames, and add to it every frame.  
When a parameter is changed or the camera is moved, clear the screen and start again. 



Manual mode 
First specify an exposure time, measured in frames. Then press the ‘Expose image’ button. 
During the exposure time, the screen will be updated with new calculations. 
Moving the camera during this exposure time creates a motion blur effect, as shown in the 
figure. 

 
(a stationary camera in dynamic mode produces high-quality results over time) 
 



 
(moving the camera while exposing in manual mode creates a motion blur effect) 

 
 
Cast multiple rays per pixel / Anti-aliasing 
Anti-aliasing is implemented by casting multiple rays per pixel in a frame and averaging the 
resulting RGB values afterwards. 
By randomly varying the starting position of a ray within its corresponding pixel, we approximate 
anti-aliasing. 
The sampling strategy is as follows: instead of shooting the ray from (x, y), add a random offset, 
uniformly distributed in the bounds of [-0.5, -0.5] × [0.5, 0.5]. 
If a user wants to turn on anti-aliasing, they can do so using a slider in continuous imaging 
mode, and a tick box in dynamic and manual imaging mode. 
In continuous mode, the ‘Anti-aliasing rays’ slider influences how many pixel samples are 
averaged, which improves AA quality, but linearly impacts performance. 
In dynamic and manual mode, the ‘Anti-aliasing’ checkbox turns the feature on or off. 



We don’t need a slider for these modes, as the AA quality will be perfect, over time. A slider to 
determine quality would therefore be useless. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(1:  no anti-aliasing leads to jagged edges; 2: anti-aliasing over time using dynamic mode leads to a smooth edge) 
 
 
Glossy reflections 
The glossy reflections work for a big part like the recursive raytracer, the difference is that the 
glossy reflection shoots out extra rays and takes the average color of all the rays with a weight 
which is the same as the dot product of the ray and the actual reflection ray. The random rays 
are calculated by adding or subtracting constants multiplied by two perpendicular vectors  of 
the reflection ray.​2 
 
0 gloss rays (No glossy reflection) 50 gloss rays 
 

 
 

 
 
 
 
 
 
 
 
 
 

2 Source used for glossy reflections: http://web.cse.ohio-state.edu/~shen.94/681/Site/Slides_files/drt.pdf 



0 gloss rays (No glossy reflection) 50 gloss rays 

 
 
 
 
 
 
 
 
Models 
 
Eddy (monkey.obj) 



 
 
   



Thomas (flower.obj) 

 
(colors achieved through lighting; rendered result copied/brightened/hue-shifted/composited in Photoshop) 
 
 

   



Renāts (F1.obj) 

 
 
Performance test 
For evaluating the performance we used the default camera location in the scene (for 
consistency) and performed 10 renders to file. In the table below we have included the lowest 
time achieved from these 10 renders. The BVH level amount is changed automatically based on 
the number of triangles in the scene (as is already explained in the BVH feature description). All 
rows in bold are rendered without any additional features, while rows in italic include some 
additional features.. 



  Triangles  Time  BVH levels 

Single Triangle  1  9ms  1 

Cube  12  20ms  6 

Cornell box (point light)  32  40ms  9 

Cornell box (spherical light)  32  66ms  9 

Monkey  968  65ms  16 

Dragon  87130  55ms  23 

Teapot  15704  96ms  20 

Blender Renāts  22456  185ms  21 

Blender Eddy  2120  69ms  15 

Blender Thomas  15418  46ms  20 

Dragon (interpolated normals)  87130  55ms  23 

Cornell box (spherical light, 50 shadow rays)  32  1250ms  9 

Cornell box (spherical light, 50 shadow rays, 10 
anti-aliasing rays) 

32  13500ms  9 

Cornell box (spherical light, 50 shadow rays, 50 
glossy rays) 

32  6300ms  9 

   



APPENDIX: a nice picture 

 
 (we had this lying around; why not show it?) 


